
International Journal of Innovative
Computing, Information and Control ICIC International c⃝2011 ISSN 1349-4198
Volume 7, Number 4, April 2011 pp. 1–09-1160

SELF-MOTIVATED AND TASK-ORIENTED, MULTI-DIMENSIONAL
LEARNING IN A DYNAMIC AND UNCERTAIN ENVIRONMENT

WITHOUT HUMAN INTERVENTION

Hasan Mujtaba, Rauf Baig, Zahid Halim and Amjad Iqbal

Department of Computer Science
National University of Computer and Emerging Sciences

A.K. Brohi Road, H-11/4, Islamabad, Pakistan
{hasan.mujtaba; rauf.baig; zahid.halim; muhammad.amjad }@nu.edu.pk

Received November 2010; revised March 2010

Abstract. The abilities to accept new information from the environment and use it
to update our existing knowledge thus adapting to the changes of our environment have
played a crucial role in the success of human beings as a species. Incorporating these
abilities in machines has been an age long desire of artificial intelligence. In this paper,
we present a learning technique based on evolutionary approaches that enables artificial
agents to detect changes in their environment and adapt accordingly. Our focus is on
enabling the agents to learn new tasks without any human intervention, relying only on
stimulus from their environment. We argue that learning in such a dynamic environment
should be a continuous process and past experiences must be retained for future scenar-
ios. The learning method itself provides a mechanism where the decrease in performance,
forced by the change in goals, triggers new learning. We conduct experimentation to show
how this approach works and results from these experiments are very encouraging.
Keywords: Artificial intelligence, Evolutionary computation, Individual and social
learning, Continuous learning, Learning in a dynamic environment, Particle swarm op-
timization, Artificial neural network, Learning in imperfect information, Evolutionary
games

1. Introduction. An intelligent system is a system that acts intelligently, i.e., it reacts
according to its surroundings and needs. It must cater for changes in its environment and
objectives. Ideally the abilities of such a system depend upon the information available
to it and its perceptual and computational limitations. Such an intelligent system must
be able to update its existing knowledge space when new information is available to it. In
other words, intelligence can be defined as the ability to learn new abilities. This ability
has been pivotal to the success of humans as a species. We (humans) adapt according
to the changes occurring in our environment, allowing us to not only survive but thrive
in (almost) any environment. It must be noted that these (real-world) environments
are not static. On the contrary, they are uncertain and constantly changing. These
changes maybe subtle and slow or discreet and obvious. In this paper, we present an
algorithm based on evolutionary approaches (Particle Swarm optimization and Artificial
Neural Networks) to enable the agents residing in it to learn from and behave according
to changes occurring in their surroundings. These intelligent agents build a dynamic
relationship with their environment enabling them to monitor changes and explore new
possibilities. This is crucial for a successful evolution of the species. To the best of our
knowledge, such a dynamic bond has been missing in most of the research work conducted
in artificial intelligence (AI) research. To test our hypothesis and our learning algorithm,
we developed a game like environment to conduct experimentation.

1



2 H. MUJTABA, R. BAIG, Z. HALIM AND A. IQBAL

Using gaming environments, researchers have tried to test limits of automated (non-
human) players. One of the earliest achievements was made when Deep Blue [1], a chess
playing computer developed by IBM, won against the reining chess world champion,
Gary Kasporov. Later on, Chinook, developed by Jonathan Schaeffer, won the world
checkers title back in 1994 [2,3]. However, both these systems relied heavily on a brute
force approach and this led to an argument about whether such systems can be called
intelligent or not. Chellipela and Fogel, developed Blondie24 [4,5] which learned to play
checkers without relying on any human expertise. Blondie24 used an Artificial Neural
Network (ANN) based co-evolutionary approach, i.e., in order to teach itself the game,
it played games against itself. Although this was a significant improvement on previous
learning mechanisms, it was still far from natural learning mechanism. Blondie24 evolved
an ANN during its learning phase which remains the same during its evaluation. This
limitation restricts the system from detecting and adapting to any changes that have
occurred in its surroundings. As mentioned earlier, response to external stimuli is crucial
in the success of natural intelligence.
Stanley et al. [6] designed “Neuro-Evolving Robotic Operatives” (NERO) in which

agents were trained to perform specific tasks. Once trained, teams of agents were deployed
to fight off against other agents. The shortcoming of NERO agents however, is the lack of
ability to learn from their surrounding environment at runtime. In a dynamic environment
(where new inputs are being generated and old ones discarded) NERO agents remain
oblivious to the changes around them and fail to see a change in task assigned to them,
e.g., agents will not recognize the change if a “capture the flag” (where the objective it to
capture the enemy flag while defending your own) scenario changed into a “deathmatch”
(the objective is it to kill as many opponents agents as you can). In our opinion, the most
significant work to address this failure to adaptive intelligence and respond to external
stimulus has been of Kendall [7]. In their research on an Imperfect Evolutionary System
(IES) they point out that this problem is due to the lack of a relationship between agents
and their surroundings. Their work only focuses on dealing a change in the environmental
parameters and does not deal with a change in objective of the agents.
From Deep Blue to IES, AI and AI based systems have come a long way in terms of

learning. However, we believe that so far AI research has ignored the role of a chang-
ing environment in the evolutionary process. In this work, we present a new learning
mechanism that deals with the imperfect and changing nature of the environment. In
our approach, the environment not only acts a medium for evolution but is itself a part
of it. Intelligent agents in this environment must be able to respond to change(s) at
any time and modify their behavior according to the nature of the change (a change can
be availability of new input parameters, introduction of new entities or species in the
environment, change in agent’s objectives, etc.). This self motivated and self directed
evolutionary process allows the agents to develop better strategies to meet the demands
of their environment. Humans play no part in this process, using the algorithm it learns
everything on its own. Hence it is possible to avail opportunities that might have been
ignored by a human performing training of the agents.
Our learning algorithm allows the agents to deal with the imperfection of information

by:

• Accepting new information from the environment and updating the existing knowl-
edge space.

• Exploration and exploitation of new opportunities provided by the environment.
• Training for a task (or objective) depending solely on the information provided by
the environment.



SELF-MOTIVATED AND TASK-ORIENTED, MULTI-DIMENSIONAL LEARNING 3

• Handling multiple objectives without knowing a priori what those objectives might
be.

Major contributions of the learning approach presented in this paper are as follow:

• Using the proposed learning algorithm, agents can acquire new skills that will help
them survive the demands of their environment. These skills are acquired and up-
dated without relying upon any human intervention.

• This technique allows agents to learn and adapt as per the requirements of their
environment (these requirements change overtime without any warning).

• It is possible for agents to use this algorithm to learn multiple objectives (or skills)
without any a priori information about those objectives (or skills).

• Our learning technique uses evolutionary approaches, a Particle Swarm Optimization
(PSO) variant & Artificial Neural Network (ANN) to detect change, based on this
change, new information can be added or obsolete information removed from current
the knowledge space.

Although current learning approaches have been very successful in some domains, we
believe their application is limited. Consider, for example, a co-evolutionary approach to
game playing. Players compete against one another to find the best one. Once a strat-
egy is successful against an opponent the learning methodology will force the remaining
strategies to be similar to it. All current approaches will ignore any new development
in the opponent. If the opponent devised a way to cheat the learning methodology will
remain oblivious to this. Furthermore learning by observation or exposure is common to
humans. We can learn new things by observing others; a child can learn to play check-
ers by observing others play the game. Keeping this in focus, our learning algorithm
is not designed to evolve in a certain environment or a particular task; rather it builds
a relationship with its surrounding environment and learns new abilities from it. The
environment can be changed to a new state at any given time and the evolution process
will incorporate the new changes within the learning process on its own.

The rest of the paper is structured in the following way: in Section 2, we present other
learning methodologies and compare them with our own work. Section 3 presents the
framework. In Section 4, we detail the environment we created to test the learning ability
of our algorithm and present the results of these tests. Conclusions drawn from these
results and recommendations for future work are given in Section 5.

2. Problem Statement and Preliminaries. Learning in a dynamic environment can
be compared with dynamic function optimization (DFO). In dynamic function optimiza-
tion, all the information about the environment remains constant and the optimum point
relocates its position. Two representative swarm based algorithms for dynamic function
optimization are [8,9]. Cultural algorithms based approaches have been used by [10-12] to
emulate a cultural evolutionary process. Reynolds and Saleem in [13,14] and Reynolds and
Peng [15] describe application of cultural algorithm for function optimization problems
in dynamic environments. However, the dynamic environment presented by them only
changed values of existing environmental variables and does not deal with introduction
of new variables. The dimension of the problems observational search space also remains
unchanged.

Other studies that have investigated dynamic environments in AI research are fuzzy
logic [16,17], qualitative reasoning [18], commonsense reasoning [19,20]. Bayesian net-
works were used in [21]. Evolutionary computation (EC) [22-25] has been used to study
adaptive intelligence. Evolutionary learning has resulted in generating behaviors and so-
lutions which were, in most cases, unexpected or previously unknown. Fogel et al. in [4,5]



4 H. MUJTABA, R. BAIG, Z. HALIM AND A. IQBAL

present advances in developing adaptive intelligence in computer games using EC tech-
niques. Uncertain and nonlinear systems were addressed by [26,27]. However, we believe
that in [7], Kendall and Su presented the revolutionary idea of learning with imperfec-
tion. They evolved ANN based agents to deal with an environment in which all the input
variables are not available at the onset and are incrementally added during learning. The
main focus of their work was to introduce the idea of an environment in which information
may change at later time slots. In this paper we introduce the idea of continuity of learn-
ing. As the Section 4 explains, we deal with an environment where change can occur at
any level of the environment at any time. Agents are never informed about any changes.
They must detect and self-adjust their behavior to deal with environmental changes.
J. C. R. Tseng et al. [28] developed META-ANALYZER, a web-search learning envi-

ronment based on the meta-index approach. Their environment, however, does not deal
with addition of new environment attributes or acquisition and learning of new abilities
based on these new attributes. Fryan has used an evolutionary approach for evolving
game playing strategies for Monopoly [29]. Another interesting experiment with evolu-
tionary approach and games is presented in [30]. ANN based controllers have been used
by Chellapilla and Fogel in [4], Fogel in [5] and the NERO game developed by Stanley et
al. [6]. ANN controllers were also used by Yannakakis et al. [31] in a simulated world
called Flatland. Yannakakis and Hallam have also evolved ANN controllers for the games
of Pac-Man and Dead End [32]. Yet another effort in this field has been made by Lucas for
the game of Cellz [33]. ANN based agents were also evolved by Messerschmidt and Engel-
brecht for playing Tic-tac-toe [34] and by Franken and Engelbrecht for playing checkers
[35]. Z. Zhang et al. [36] used NN based approach for the Boolean Series Prediction
Question (BSPQ) problem.
Archives in games have been used for various purposes. One of its major uses has been

to store cases for cultural algorithms. One representative work is [37]. Another use has
been to overcome the problem of “forgetting” in co-evolution algorithms. An example of
this use can be found in [38]. S.-Z. Zhao and P. N. Suganthan also used archives in [39].
In contrast to these traditional approaches, our learning algorithm is different from

any previous work. Our focus is on an environment where change is essential part of the
evolutionary process. Here anything can change (i.e., the nature of the problem, the goal
of evolution or an evolutionary parameter(s) or even the environment itself can change) at
any time. New information may become available and previously known information may
become obsolete. A change in the environment will usually render the current learning
void, resulting in not only a change in the shape of the search space but the search
space itself. Traditional learning mechanisms restricted learning by forcing agents to
move towards best solutions without considering the change in environmental status.
Agents evolve strategies over generations to deal with their environment. These strategies
ignore the new information available, rendering these strategies useless. Our learning
algorithm allows the agents to discard these obsolete and outdated strategies in a changed
environment but archiving them in case environmental changes revert back.
Such changing behavior is common to our natural world. An example of such a change

can be the climatic changes occurring around us, forcing humans to adapt accordingly.
In an agricultural society, strategies deployed for a warm weather are different from a
colder one. A rapid change in the climate can force a change in strategy earlier than
expected. If the people living within that area fail to recognize this their survival can be
jeopardized. Keeping these factors in view, we define an imperfect evolutionary world as
a system constituent of different entities, as shown in (1). Each of these entities plays a



SELF-MOTIVATED AND TASK-ORIENTED, MULTI-DIMENSIONAL LEARNING 5

vital role in the evolution of the environment and its inhabitants.

ET = {iT} ∪ {IT} ∪ {RT} ∪ {OT} ∪ {UT} (1)

At every time step T , the environment ET is a union of set of inputs iT , set of intelligent
(evolving) individuals (or agents) IT , set of rules applicable to the environment RT , set
of tasks or objectives that agents must perform OT and UT is the set of all other envi-
ronmental entities, e.g., non-evolving agents present in the environment, environmental
features like walls, forts, etc. With a change in T any of these sets can change. This
change in ET will affect the strategy S of an individual i (2).

ST
i =

∑
aTi −

∑
γT
i (2)

ST
i is the strategy evolved by an individual i at time T . This strategy is evolved using

the current set of inputs available to the agent aTi minus the set of obsolete or irrelevant
inputs γT

i . Note that since each of the individuals present in the environment views it
from its own perspective, each of these sets can vary between individuals for the same
time T .

Thus learning in an unpredictable and changing environment should be a continuous
process. This continuity in learning enables the agents from latter generations to avoid
mistakes committed by previous generations. In the scenario mentioned above traditional
learning techniques would force the evolution to move in the direction of the fittest strategy
found so far. Ignoring the fact that after a change in environment the fittest strategy is now
obsolete and following it would lead to disastrous consequences. Hence the evolutionary
process stops itself from improving when the environment changes. Continuous Learning
enables the learning process to continue by exploring new avenues of evolution and avoid
this state of stalemate.

Agents are evaluated based on their individual fitness values according to the role
played by them, keeping in view the current status of environment. These individual
fitness values cumulate as the social fitness. Just as in the natural world, humans try to
improve their own existence. This individual improvement ultimately improves the overall
society. Our algorithm allows for a social evolution which is driven by individual evolution.
However, individual choices may also be affected by the direction of social evolution.
Similar to natural world, individuals in our algorithm sacrifice themselves for the benefit
of their society. This interdependent social and individual learning mechanism allows for
a better understanding and exploration of the environment by the agents. Information is
disseminated between agents via the social learning mechanism, while the exploitation of
environmental factors is primarily targeted by the individual learning.

3. Experience Based Learning Algorithm for Unpredictable and Dynamic En-
vironment. Our proposed learning algorithm enables agents to adjust according to their
surroundings. We call it Experience based Learning Algorithm for Unpredictable and Dy-
namic Environment (ELUDE). This learning algorithm trains the agents using a swarm
based evolutionary approach. Abilities of the individual agents can be represented as
neural networks or rule-sets etc. We have used an lbest PSO based approach to train
ANNs. Each of these ANNs represents a certain skill or ability acquired by the agents
from the inputs available from the environment. An agent may acquire more than one
skill or it may focus on learning one skill. This direction of learning is dictated by the
current state and requirement of the surrounding environment. The learning algorithm
acquires all the information from the environment and at no point requires any human
intervention to guide its learning process.



6 H. MUJTABA, R. BAIG, Z. HALIM AND A. IQBAL

PSO is a heuristic search algorithm modeled on behavior patterns of flock of birds
[40]. A population of solutions, called particles, is spawned randomly and then “flown”
in the search space towards areas of higher fitness. A record of the best particle found
so far is maintained and is called global best. Information about global best position is
available to all particles. Each particle maintains a personal best position. Movement of
particle is determined by taking into account the global best, personal best and a random
component. We use an lbest PSO variant in our learning algorithm. We believe that
lbest PSO provides more diversity at the cost of slower convergence. In lbest PSO, the
population of particles is grouped into several sub swarms. All the particles in a sub-
swarm are completely connected to one another. Each particle forms a sub-swarm by
being completely connected to its n neighboring particles. Positions of the particles are
updated using the Equation (3):

xi(t+ 1) = xi(t) + vi(t+ 1) (3)

where
vi(t+ 1) = wvi(t) + c1r1(t)(yi(t)− xi(t)) + c2r2(t)(ŷi(t)− xi(t)) (4)

xi represents the current position of particle x in dimension i, vi represents current velocity,
yi is the personal best position of the particle and ŷj represents that sub-swarm’s global
best (called neighborhood best) position to which the particle being updated belongs. The
constants c1, c2, r1 and r2 are used to control the area in which search is to be conducted
and w is inertia weight. The velocity updates are clamped in a range [−vmax, vmax].
In our approach, instead of creating sub-swarms in a sliding window fashion (a particle

is connected to its n neighbors and the next particle is connected to its n neighbors,
and so on). We have several completely connected sub-swarms which are isolated from
one another except through their corner particles. Each corner particle is completely
connected with all the particles of two sub-swarms (Figure 1). These corner particles act
as a source of information transfer.

Figure 1. The architecture used for defining sub-swarms. The 32 particles
are divided into 8 sub-swarms based on their index numbers. The corner
particles are members of two sub-swarms and follow the better of the two
local bests available to them.

In our initial experimentation with learning in a dynamic environment, we discovered
that the classical PSO algorithm tends to fail in dynamic environments. This is because
given an environment the particles converge on an optimum point in the fitness landscape.
As soon as the optimum point changes due to changed fitness function the particles
gathered in the old convergence area may not have enough diversity to find the new
optimum. They are further impeded by the fact that the global best and personal bests
are still at positions which may be now in an area with very low fitness, but the PSO
update equation tries to keep the particles in that area. To overcome these limitations of



SELF-MOTIVATED AND TASK-ORIENTED, MULTI-DIMENSIONAL LEARNING 7

the PSO, we have introduced re-initialization of one of the worst performing sub-swarms
in the lbest version of PSO. The re-initialization of a sub-swarm to random positions
injects enough diversity in the particles so that they can overcome the disadvantages
of previous convergence in the event of an environment change. On the other hand,
if the environment is the same as that of the previous iteration, the other sub-swarms
keep on learning according to the old global and personal bests. Hence learning is not
disturbed if the environment is stable but there is an opportunity to learn new strategies
if the environment changes. We believe this balance between striving for convergence
(exploitation) while maintaining enough diversity (exploration) is beneficial for avoiding
sub-optimal and premature convergence even in static environments.

The steps of our learning algorithm are presented below:

1) Randomly initialize S overlapping swarms with P particles
2) Initialize c1, c2, r1, r2 and w
3) Create an archive A with x slots
4) Set a randomly selected task K for learning
5) Repeat this step for T iterations

a. Evaluate fitness of each particle
i. For every particle create N clones in the environment
ii. Clones are allowed to move in the environment for E time steps
iii. Fitness of the particle is determined by the performance of its clones

b. Update personal best of the particles
c. Determine the lbest particle of each sub-swarms
d. After every Ta iterations

i. Determine the gbest particle
ii. Insert gbest particle into an empty slot of A

e. Determine exploration boundary for each sub-swarm
f. Use lbest PSO update equation to find the new positions of the particles
g. After every Tr iterations force exploration of new opportunities

i. Sort sub-swarms on the basis of their accumulated fitness Fa

ii. Reinitialize the worst sub-swarm, i.e., sub-swarm with the lowest Fa value
h. Update age of strategies present in A

6) Go to Step 5

The algorithm starts creating P particles, initialized randomly in the range [−5, 5].
Each of these particles represents a strategy to deal with the demands of the surrounding
environment. These particles (or strategies) are grouped into S sub-swarms. Each particle
is fully connected to all other particles within its sub-swarm, i.e., each particle can share
information about its position with other particles of its sub-swarm. As shown in Figure
1, particles present at the corners of the sub-swarm share information between members
of two different sub-swarms. Next parameters for PSO equations are initialized and an
archive is created to store strategies. This archive acts as a pool for storing the best
strategies that have been developed by the population of particles. The environment sets
a task K for the agents to learn. Task is manifested in the fitness function being used
for evaluating the particles. A task can be an objective the agents have to learn or a
skill they must acquire. An agent of the system is represented by an ANN. Based on
the inputs available from the environment; each agent tries to learn a task. During the
evolutionary process, particles must choose whether they should improve their current
strategy or should they abandon it and try a new one. As the agents are not given any
explicit knowledge about the task that they have to learn; only their fitness evaluation is
made available to them. Hence the decision to either refine current strategy or look for a



8 H. MUJTABA, R. BAIG, Z. HALIM AND A. IQBAL

new one is based upon the fitness of their current strategy. Using this fitness value agents
assess whether they are learning something useful or unnecessary (or obsolete, as the case
maybe).
This fitness evaluation is performed by creating copies of an agent and deploying them

in the environment. These copies (or clones as we call them) are allowed to perform the
task they have chosen to learn based on the inputs for a certain number of time steps
E. Their interactions with the environment from these E steps are monitored. These are
passed on to the fitness function, which calculates their fitness based on current state of
the environment. After fitness of all the particles has been calculated, the personal best
(pbest) and the best particle of the sub-swarm (lbest) are determined. An lbest particle is
the particle with the highest fitness value within a sub-swarm (if we have n sub-swarms,
we will have n lbest particles). In contrast global best (gbest) particle is the best particle
out of the entire population of particles (or the best of all lbest particles). pbest position
of a particle is the best position it has ever achieved. pbest and lbest position of its
sub-swarm are used to determine the next position of a particle using the PSO equations
mentioned ealier.
While updating the position of the particle we apply a limit upon how far it can jump

from its current position. We call this the exploration boundary. The rationale behind
this boundary is to allow particles with good fitness to search around their current po-
sition in hopes of finding an even better solution. While weaker solutions are allowed
to jump farther away from their current positions so they can find a better area to ex-
plore. This exploration boundary is set dynamically and is different for each sub-swarm
(depending upon the fitness of its lbest particle). For our PSO based approach, we apply
this movement restriction using velocity clamping, as following:

νi
max = max

{(
µ−

(
lbesti/gbest

))
, 1
}

(5)

νi
max is the maximum velocity of the sub-swarm i and lbexti is its lbest particle. µ is set
to 1.05 to avoid stagnation of the sub-swarm with the gbest particle. Using this velocity
clamping the sub-swarm having the best fitness will have a low νmax allowing for better
exploration of it current locality without wandering about too much. While the sub-swarm
with poorest fitness will have highest velocity allowing it to escape the low fitness area in
which it is currently searching. After every Ta iterations, the gbest particle is chosen as
a candidate for addition to the archive. If the fitness value of this candidate particle is
higher than a threshold value then it is added to archive. Duplication of particles is not
allowed in the archive. Here it must be noted that threshold value too low or too high,
based on experimentation we choose 0.7 – 0.8 out of a normalized fitness value (fitness is
between 0 – 1, 1 being maximum fitness). This threshold seems to be dependent upon
the complexity of the problem and the demands of the environment. If there is no empty
slot then the most ancient strategy is deleted and the new strategy occupies its slot (first
in first out).
In order to explore new opportunities in the environment, the worst sub-swarm is

reinitialized after Tr iterations. This sub-swarm is chosen on the basis of its accumulated
fitness Fa given in (6).

F i
a =

∑
Ta

(F i
1 + F i

2 + . . .+ F i
n) (6)

F i
a is the accumulated fitness of sub-swarm i and it is the combined fitness values of all the

particles of this sub-swarm summed over the past Tr iterations. It is possible for a sub-
swarm to achieve high fitness in one state of the environment while the same sub-swarm
main perform poorly after the change in environment. In such a case, monitoring only
the previous Tr allows the learning algorithm to observe only the recent performance of a



SELF-MOTIVATED AND TASK-ORIENTED, MULTI-DIMENSIONAL LEARNING 9

sub-swarm. Ideally sub-swarms which have not shown any improvement in these recent
iterations should be used for further exploration. On the other hand, sub-swarms that are
currently performing well should be allowed to refine their strategies rather than explore
new ones. For this reason, we not only check the accumulated fitness of a sub-swarm but
also check if it has found its lbest particle within these last Tr iterations. A sub-swarm
that has found its best particle within these iterations is probably improving itself and
it should be allowed to improve. In such a case, we perform the same steps for the 2nd

worst sub-swarm. In case this 2nd worst sub-swarm is also improving itself no further
sub-swarms are checked. We only check the bottom two sub-swarms for exploration to
avoid the whole algorithm becoming a random search in the search space. Once a sub-
swarm is chosen for exploration, its particles can be reinitialized to random values or they
may choose a strategy present in the archive (overlapping members of the sub-swarm are
reinitialized along with the rest of the sub-swarm). If the strategy chosen from the archive
is suitable for the current state of the environment, it will lead to better fitness value else
its performance will be similar to a random re-initialization. In some of the experiments
we chose the worst performing sub-swarm for random re-initialization while the second
worst sub-swarm was replaced by a strategy from the archive, results of these experiments
are presented in next section. Strategies present in the archive are tried in a fixed cyclic
order. If the strategy present in a slot has been tried in the last iteration, then it is the
turn of the next few strategies found in the next slots. Each member of the sub-swarm is
initialized with one strategy. Hence we can try as many strategies as there are members
in a sub-swarm.

This performance based learning enables the agents to explore different possible tasks
(based on inputs it choose) to find the one best suited. After fitness evaluation of all
particles of each sub-swarm, best sub-swarm is chosen. The best sub-swarm acts like a
leader and all other sub-swarms try to adjust their behavior in coherence with this leader.
No sub-swarm is told exactly what the leader is doing. The information shared is through
the PSO update equation to find the new positions of the particles.

4. Experimentation. We now describe our experimental setup for our experimentation.
In order to test the learning ability of ELUDE we have created an uncertain and changing
environment. Although this environment has similarities with Flatland [31], Cellz [33]
and Dead End [32] but it serves a different purpose. This environment was developed
to model uncertainty and imperfection of information similar to our real-world scenarios.
Serving as the test bed for our experiments, it is a multi-agent environment in which
agent can interact with each other and other artifacts. These interactions are monitored
to calculate the learning ability of an agent present in the environment. It is a torus (the
agents can reappear on the opposite side once they go over the boundary) 80× 80 pixel,
2-D, environment in which a number of learning agents can be present along with non-
learning artifacts. Agents have to learn to survive the different states of the environment.
The demand of the environment can change at any time without any explicit warning.
The change in task is manifested by the changed fitness function. The only information
available to the agent is in the form of the fitness evaluation of their current strategy.
There are two different kinds of agents present in the environment, artifacts (non-learning
agents) and agents (learning agents).

4.1. Artifacts. We have created two types of artifacts:

a. Food particles (target points) which act as goals for the agent,
b. Carnivores (animals) which can act both as predators and prey.



10 H. MUJTABA, R. BAIG, Z. HALIM AND A. IQBAL

Even though several other artifacts can be conceived and used (e.g., the artifact called
gun [41,42]), we think that these two artifacts are sufficient for our current set of experi-
ments. Food particles are static, while the carnivores can move.
These carnivores play an interesting, dual role in the environment. They act as preda-

tors when they encounter a single agent and become prey when two (or more) agents
cooperate to hunt a carnivore. Artifacts are randomly placed in the environment and
their quantity is kept constant, i.e., if a food artifact is eaten up by an agent another one
is spawned at some random location.

4.2. Agents. Agents have the ability to learn using the learning algorithm. For the cur-
rent experiments we have only one type (or species) of agents which have the capability
to observe their surrounding environment and act accordingly. However, the environ-
ment can support a multiple species. Each of these species can have unique abilities or
characteristics that differentiate it from others.
For our current experimentation, each agent is an ANN with fixed architecture shown

in Figure 2.

Figure 2. The architecture of the ANN controller.

Each of the agents receives different inputs from the environment. These are distance
and angle from z (z = 2) closest food targets, agents and carnivores. The distance is
Euclidean distance and the angle is absolute angle taken from the perspective of the
agent. There are two outputs of the ANN, direction and size of step of the agent. The
hidden layer consists of five neurons with sigmoid activation function. The purpose of the
ANN is to provide a strategy for learning of any task rather than mastering a given task,
this learning need not be optimal and this architecture serves its purpose well, a similar
been used by Yannakakis [27].

4.3. Environment phases. The environment we have developed can change its phase
at any time without any warning to the agents. Each phase change demands the agents
must learn a new ability. The objective of each phase is to train the agents to learn a
specific task. We have used four different environment phases in our experimentation,
these are.

4.3.1. Grazing phase (food target achievement). In this phase of the environment, agents
have to collect food. Ideally each agent should approach its closest food point. Thus
fitness function is designed so that the agents are encouraged to try to reach their nearest
target point in minimum number of steps. When a target is achieved by an agent it



SELF-MOTIVATED AND TASK-ORIENTED, MULTI-DIMENSIONAL LEARNING 11

vanishes from the environment and a new target is randomly placed to keep the quantity
of targets constant.

The fitness function for this task is simply the number of targets achieved by an agent in
a fixed number of time steps. The number of targets achieved is divided by the maximum
number of targets expected to be reached, so that the fitness function is normalized
between 0 and 1. This number can be determined experimentally by first training the
agents with the help of un-normalized fitness function and then using the best agent found
to determine the maximum targets achieved. The fitness function for this phase is:

f p = min
(
1, tpa/t

m
a

)
(7)

fp is the fitness of the particle p and tpa are the total food points collected by it. tma is the
maximum number of food points allowed for collection.

4.3.2. Awareness phase (collision avoidance). In this phase, agents have to avoid collision
with other agents. Agents are motivated to move by using the number of steps taken by
them. Fitness is calculated using

f p = max
(
0, (tmc − tpc)/t

m
c

)
(8)

f p is the fitness of the particle p, while tpc are the number of collisions made by it. tmc are
maximum collisions allowed by a particle.

During experimentation, we noted that agents came-up with some very interesting
strategies to coup with the needs of the environment. In order to avoid collisions agents
stopped moving. If they do not move they will not collide. To motivate agents to move
we placed a threshold on the number of steps. Agents must move at least 5000 steps else
their fitness will not be calculated and will remain 0. As a reaction to this, agents started
continuously jumping back and forth between two points. Although we placed another to
check to avoid this behavior, it highlights the algorithms ability to exploit any weakness
in their surrounding environment.

4.3.3. Survival phase (predator avoidance). During this phase carnivores are introduced
into the environment. Agent must avoid being eaten up by these carnivores. A carnivore
actively pursues an agent according to the following rule:

At each time step, take one step towards the nearest agent.
In order to balance the odds, the maximum moving speed of the predator is half the

maximum speed of the agents. If the predator catches an agent, agents deaths are in-
cremented and it agent is randomly re-spawned. Fitness function for this phase is as
follows:

f p = max (0, (tmd − tpd)/t
m
d ) (9)

f p is the fitness of the particle p, while tpd are the number of times the agent died at the
hands of the carnivores. tmd is the maximum number of deaths allowed for a particle.

4.3.4. Hunting phase (carnivore consumption). In this phase, agents have to cooperate
with other agents to capture a carnivore. If the carnivore is caught, then it is randomly
placed somewhere else and a successful capture is counted for all agents that took place
in this capture. The carnivores move according to the following rule during this task:

At each time step, take one step away from the nearest agent.
The fitness function for this task is the number of carnivores captured by agents.

fp = min
(
1, tph/t

m
h

)
(10)



12 H. MUJTABA, R. BAIG, Z. HALIM AND A. IQBAL

f p is the fitness of the particle p and tpa are the number of carnivores successfully hunted
by it. tmh is the maximum number of hunts allowed.
Difference between Survival and Hunting phases is, in the Survival Phase agents are

not allowed to capture carnivores. While in the Hunting Phase this information is added
to the environment.
It must be noted the activation of a new phase usually means the deactivation of

pervious phase. Consider the example of the environment switching from Grazing to
Hunting Phase. Fitness function of Hunting Phase does not take into account the number
of food points captured by the particle, hence all food collection strategies will fail in the
new phase. It is possible to form new phases using different combinations of these four
phases. For example, Grazing plus Awareness Phase, where agents would have to collect
food points while avoiding collisions. Fitness in such a case would be calculated using all
the required task parameters, i.e., mean value of targets achieved and collisions avoided.
We normalize our fitness functions so that the fitness from one phase is comparable

to the fitness achieved in another phase. For determining the max values agents are
trained to learn a task using the learning algorithm. During this process the task remains
unchanged. The best strategy found after this training phase is then tested for 100
simulations and the maximum, minimum, median and average values are noted. These
values are then used for normalization and serve as threshold values (Table 1).

Table 1. Parameters for fit-
ness normalization

tma 220
tmc 50
tmd 300
tmh 100

Table 2. Parameters of envi-
ronment for experiments

Agents 20
Targets 30

Carnivores 10

Table 3. Parameters
for learning algorithm

P 32
c1, c2 & w 1

r1, r2 0–1
vmax 0.05–1
S 8
T 20
N 20
E 300

4.4. Learning experimentation. We now test the ability of the learning algorithm. We
create agents and place them in the environment. These agents must develop strategies
that will improve their chances of survival. However, the environment adds a new layer
of difficult by changing itself from one phase to another. Agents must detect this phase
change and adapt accordingly. We do not claim that these agents have found the optimal
strategies for each phase. Our focus is on their ability to learn new skills and acquire new
objectives on their own. Tables 2 and 3 present parameters used in these experiments.
For our first experiment, we test the ability of the standard PSO approach. The en-

vironment changes from Grazing phase to Hunting results are shown in Figure 3. The
agents were allowed to learn for 1,000 iterations in the environment according to the fit-
ness function of the first task and then the task is changed. Since the PSO particles have
their local best and personal best particle set according to the old task they are not able
to explore the new fitness landscape. The same failure to learn is observed for most of
the experimental runs that have been made for different task sequences. Agent learning
is plotted on y-axis and learning iterations are shown on x-axis.



SELF-MOTIVATED AND TASK-ORIENTED, MULTI-DIMENSIONAL LEARNING 13

Figure 3. The results of non re-initialization of sub-swarms.

Figure 4 shows what happened if we explicitly inform the learners that the task has
changed. The explicit information allows the learner to learn faster and achieve high
fitness in relatively less number of iterations (compared to the previous case when no
such information was available).

Figure 4. The results of explicit information about change.

Figure 5. Learning in an uncertain and changing environment (without
retaining historical learning).

We now test the ability of our learning algorithm in a changing and uncertain envi-
ronment. For this experiment, we forced the environment to change phase after every
1000 iterations (agents are not aware of this fact). Environment starts off from Grazing
phase; agents are allowed to learn food gathering strategies for 1,000 iterations. After
this the environment switches to Hunting phase. After this the environment enters a new
Grazing plus Survival phase where agents have to avoid being eaten by carnivores while



14 H. MUJTABA, R. BAIG, Z. HALIM AND A. IQBAL

capturing food points. At the fourth phase change, the environment reverts to a Hunting
phase. The final phase change enforces a Grazing plus Awareness Phase. Results of this
experiment are presented in Figure 5. Iterations allowed for learning are on x-axis while
y-axis shows the learning of the agents at that iteration.
It is evident from Figure 5 that after every phase change, agents have to abandon their

previous strategies and learn new ones. These new strategies are developed to handle
the new requirements of the environment. Figure 5 proves that our learning algorithm is
able to learn in an uncertain and dynamic environment of imperfect information. Agents
had to readjust their strategies according to the changes in their environment. The only
information made available to the agents was the inputs available in the environment and
the fitness evaluation of their strategy. Although we changed the iterations at a regular
interval of 1000 iterations, the results for irregular intervals show a similar pattern. It
must be noted that agents must be given enough time for learning to occur, e.g., in
mentioned scenario if the environment changed after every 50 iterations the agents would
not be able to explore enough of the search space hence failing to learn the task currently
active in the environment. How much time (or iterations) is sufficient for an agent to
perform successful learning is an open question and we believe its answer depends upon
the complexity of the task.
We these results summarize that our learning algorithm is able to learn new strategies

according to changes in environment and can handle task changes. It performs well
where the classical PSO fails to do so showing that it is better if there is a portion of
the population continuously trying to learn new strategies as compared to a population
which has converged on optimum strategies. From our experimentation we observed that
although the agents were successful in learning the new tasks assigned to them, in our
approach they discarded the previously learned strategies [36]. This led to “re-inventing
the wheel” like scenario where the agent had to learn a strategy forget it when the task
changed and relearn it if the environment reverted back to its original state. In order to
deal such a scenario we introduced the concept of retaining historical information (using
archives).
Using this experiment, we now show the use of retaining historical information in an

archive. These stored strategies improve the learning time needed in the changing task
environment. To see how the system behaves with and without this historical information
we test the learning ability of the algorithm with and without an archive. Table 4 present
parameters of the archive used in this experiment.

Table 4. Parameters of archive

Na 5
Ta 300
Tb 20

Na are the total number of slots present in the archive, Ta is the number of iterations
after which a strategy was selected to be stored in the archive and Tb is the number
of iteration for determination of second-worst sub-swarm for trying a strategy from the
archive.
We use the same environment settings and task sequence used for Figur 5. Note in the

approach used in Figure 5 the archive was disabled.
To shorten the length of the experiment we filled the archive with the best strategies

already found from previous experiments. At the start of the experiment, four of these
slots have already been filled with strategies. The results of the experiment are shown in
Figure 6.



SELF-MOTIVATED AND TASK-ORIENTED, MULTI-DIMENSIONAL LEARNING 15

Figure 6. Learning algorithm with retaining historical learning.

Whenever a sub-swarm tries a strategy from the archive that matches the current state
of the environment, the learning performance of the agents goes very high (evident from
last two phase changes). This higher fitness position is disseminated to other sub-swarms
and the fitness of the entire population increases in a fairly less time frame. However,
If there are no strategies present in that archive that match a particular phase then
learning resumes its normal course (evident from third phase change). We tested several
random sequences of tasks (of arbitrary length) and results showed that whenever the
environment reverts back to an earlier phase (i.e., a phase familiar to the agents due to
their past experience). The presence of archive improves fitness dramatically and the
learning spreads like wild-fire to all other sub-swarms.

5. Conclusions. Humans live in a dynamic world and have to cope with a series of
challenges which are sometimes new and sometimes previous ones visiting again. They
are forced to change their strategy as soon as the current strategy stops producing results.
The changed strategy is sometimes a previously discovered one and sometimes a new one
has to be learnt. In this work, we attempt to model and solve the problem of learning
in an environment where the tasks change without any warning. For this purpose, we
developed a PSO based learning algorithm which incorporates an archive, and test it in a
gaming environment. Poorly performing agents are weeded out and new ones are created
in their place to promote diversity, while average and above average agents continue to
learn with efficient strategies being disseminated throughout the population. Half of the
newly created agents are randomly initialized and half of them are resurrected by strategies
taken from an archive. This continual learning is more coherent with the learning that
takes place in our everyday environment.

Our experimental results show that our learning algorithm becomes more effective with
the incorporation of an archive. The archive idea can be supplemented by finding a
method for automated adjustment of parameters in three areas: the policy for placing
strategies in the archive, the optimum size of the archive and the policy for retrieving
strategies from the archive.

The gaming environment may also be made more interesting with more complex arti-
facts, agents and tasks. For example, we can have a multitude of agent types (or species),
where each species has some unique abilities and architecture that differentiate it from
others. We can have a flying species, swimming species, and yet others which can hear.
The agents of the same species can all have the same task(s) or they can have different
goals and act as a team to achieve some higher objective.

REFERENCES

[1] D. Goodman and R. Keene, Man versus Machine: Kasparov versus Deep Blue, MA: H3 Publications,
Cambridge, 1997.



16 H. MUJTABA, R. BAIG, Z. HALIM AND A. IQBAL

[2] J. Schaeffer, R. Lake and P. Lu, CHINOOK the world man-machine checkers champion, AI Magazine,
vol.17, no.1, pp.21-30, 1996.

[3] J. Schaeffer, One Jump Ahead: Challenging Human Supremacy in Checkers, Springer-Verlag, New
York, 1997.

[4] K. Chellapilla and D. B. Fogel, Evolving an expert checkers playing program without using human
expertise, IEEE Trans. Evol. Comput., vol.5, no.4, pp.422-428, 2001.

[5] D. B. Fogel, Blondie24, Playing at the Edge of AI, Morgan Kaufmann, San Mateo, 2002.
[6] K. O. Stanley, B. D. Bryant and R. Miikkulainen, Real-time neuroevolution in the NERO video

game, IEEE Trans. Evol. Comput., vol.9, no.6, pp.653-668, 2005.
[7] G. Kendall and Y. Su, Imperfect evolutionary systems, IEEE Trans. Evol. Comput., vol.11, no.3,

pp.294-307, 2007.
[8] T. Blackwell and J. Branke, Multiswarms, exclusion, and anti-convergence in dynamic environments,

IEEE Trans. Evol. Comput., vol.10, no.4, pp.459-472, 2006.
[9] D. Parrott and X. Li, Locating and tracking multiple dynamic optima by a particle swarm model

using speciation, IEEE Trans. Evol. Comput., vol.10, no.4, pp.440-458, 2006.
[10] R. G. Reynolds, An Adaptive Computer Model of the Evolution of Agriculture for Hunter-Gatherers

in the Valley of Oaxaca, Ph.D. Thesis, Univ. Michigan, Ann Arbor, MI, 1979.
[11] R. G. Reynolds, An introduction to cultural algorithms, Proc. of the 3rd Annu. Conf. Evol. Program.,

pp.131-139, 1994.
[12] M. Sternberg and R. G. Reynolds, Using cultural algorithms to support re-engineering of rule-

based expert systems in dynamic environments: A case study in fraud detection, IEEE Trans. Evol.
Comput., vol.1, no.4, pp.225-243, 1997.

[13] R. G. Reynolds and S. Saleem, Function optimization with cultural algorithms in dynamic environ-
ments, Proc. of IEEE Particle Swarm Optimization Workshop, pp.63-79, 2001.

[14] R. G. Reynolds and S. Saleem, The impact of environmental dynamics on cultural emergence, in
Perspectives on Adaptation in Natural and Artificial Systems – Essays in Honor of John Holland,
L. Booker, S. Forrest, M. Mitchell and R. Riolo (eds.), London, Oxford Univ. Press, 2004.

[15] R. G. Reynolds and B. Peng, Cultural algorithms: Knowledge learning in dynamic environments,
Proc. of IEEE Int. Congr. Evol. Comput., pp.1751-1758, 2004.

[16] L. A. Zadeh, Fuzzy sets, Information and Control, vol.8, no.3, pp.338-353, 1965.
[17] L. A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems, vol.1, pp.3-28,

1978.
[18] D. S. Weld and J. de Kleer, Readings in Qualitative Reasoning about Physical Systems, Morgan

Kaufmann, San Mateo, 1988.
[19] A. Newell and H. A. Simon, GPS, a program that simulates human thought, in Computers and

Thought, E. A. Feigenbaum and J. Feldman (eds.), New York, McGraw-Hill, 1963.
[20] M. L. Minsky, The Society of Mind, Simon & Schuster, New York, 1986.
[21] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan

Kaufmann, San Mateo, 1988.
[22] X. Yao, Evolutionary Computation – Theory and Applications, World Scientific, Singapore, 1999.
[23] D. B. Fogel, Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, 2nd

Edition, IEEE Press, Piscataway, 2000.
[24] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computation (Natural Computing Series),

Springer, New York, 2003.
[25] K. Weng and L. Yao, Fuzzy modeling based on self-learning of adaptive ellipsoids, ICIC Express

Letters, vol.3, no.4(A), pp.1043-1048, 2009.
[26] R. Mei, Q. Wu and C. Jiang, Neural network robust adaptive control for a class of time uncertain

nonlinear systems, International Journal of Innovative Computing, Information and Control, vol.6,
no.3(A), pp.931-940, 2010.

[27] C. Chen and P. Chen, GA-based adaptive neural network controllers for nonlinear systems, In-
ternational Journal of Innovative Computing, Information and Control, vol.6, no.4, pp.1793-1803,
2010.

[28] J. C. R. Tseng, G. Hwang, P. Tsai and C. Tsai, Meta-analyzer: A web-based learning environment for
analyzing student information searching behaviors, International Journal of Innovative Computing,
Information and Control, vol.5, no.3, pp.567-580, 2009.

[29] C. M. Frayn, An evolutionary approach to strategies for the game of monopoly R⃝, Proc. of IEEE
Symposium on Computational Intelligence and Games, 2005.



SELF-MOTIVATED AND TASK-ORIENTED, MULTI-DIMENSIONAL LEARNING 17

[30] R. G. Reynolds, Z. Kobti, T. A. Kohler and L. Yap, Unraveling ancient mysteries: Reimagining the
past using evolutionary computation in a complex gaming environment, IEEE Trans. Evol. Comput.,
vol.9, no.6, pp.707-720, 2005.

[31] G. N. Yannakakis, J. Levine and J. Hallam, Emerging cooperation with minimal effort: Rewarding
over mimicking, IEEE Trans. on Evolutionary Computation, vol.11, no.3, pp.382-396, 2007.

[32] G. N. Yannakakis and J. Hallam, A generic approach for obtaining higher entertainment in preda-
tor/prey computer games, Journal of Game Development, vol.1, no.3, 2005.

[33] S. M. Lucas, Cellz: A simple dynamical game for testing evolutionary algorithms, IEEE CEC, vol.1,
pp.1007-1014, 2004.

[34] L. Messerschmidt and A. P. Engelbrecht, Learning to play games using a PSO-based competitive
learning approach, IEEE Trans. on Evolutionary Computation, vol.8, no.3, pp.280-288, 2004.

[35] N. Franken and A. Engelbrecht, Comparing PSO structures to learn the game of checkers from zero
knowledge, IEEE Congress on Evolutionary Computation, 2003.

[36] Z. Zhang, S. Gao, G. Yang, F. Li and Z. Tang, An algorithm of supervised learning for elman neural
network, International Journal of Innovative Computing, Information and Control, vol.5, no.10(A),
pp.2997-3012, 2009.

[37] S. J. Louis and C. Miles, Playing to learn: Case-injected genetic algorithms for learning to play
computer games, IEEE Trans. on Evolutionary Computation, vol.9, no.6, 2005.

[38] P. M. Avery, Z. Michalewicz and M. Schmidt, A historical population in a coevolutionary system,
Proc. of IEEE Symposium on Computational Intelligence and Games, 2007.

[39] S. Zhao and P. N. Suganthan, Multi-objective evolutionary algorithm with ensemble of external
archives, International Journal of Innovative Computing, Information and Control, vol.6, no.4,
pp.1713-1726, 2010.

[40] A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligence, John Willey & Sons, 2005.
[41] H. Mujtaba and A. R. Baig, Survival by continuous learning in a dynamic multiple task environment,

Proc. of IEEE Symposium on Computational Intelligence and Games, 2008.
[42] H. Mujtaba and A. R. Baig, Retaining the lessons from past for better performance in a dynamic

multiple task environment, IEEE Congress on Evolutionary Computation, 2008.


